In 2016 I defended a Ph.D. in Computer Science, which was a cotutelle

between the Université de Lorraine and the University of Calgary; my

advisors were Emmanuel Thomé and Michael J. Jacobson, Jr.

My thesis was on the fast computation of theta functions, in time which is

quasi-linear in the number of digits of precision wanted. The method

generalizes a link between theta constants and the arithmetico-geometric

mean, using Newton’s method to achieve the desired complexity; this method

appears to generalize nicely to theta functions of genus 2. You can take a

look at my manuscript, which was written in English.

My research works was published in the following papers:

*Computing Jacobi’s Theta in quasi-linear time*(2015) ; to appear in*Mathematics of Computation*.- An implementation of this algorithm using the MPC library is available here.

*Computing theta functions in genus 2 and above in quasi-linear time*(2016), with Emmanuel Thomé; accepted at ANTS-XII.- An implementation of this algorithm in MAGMA is available here.

- Plane Quartics over Q with Complex Multiplication (2017), with Pınar Kılıçer, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijsling and Marco Streng; submitted.
- A MAGMA implementation of the fast computation of genus 3 theta constants is available here; however there seems to be a few problems with some period matrices.

I also published a research article during my first year of master’s, on

genus 2 point multiplication:

*Improved scalar multiplication on hyperelliptic Koblitz curves*(2011), with Michael J. Jacobson, Jr.; published at SAC 2011 ; Lecture Notes in Computer Science, 2012, Volume 7118, Selected Areas in Cryptography 2011, Pages 399-411.

Finally, during my Ph.D., I also wrote an article, which was accepted as a

short talk at SSTIC 2015; this article deals with building quickly a

dictionary of famous sentences and expressions, using Wikipedia, to be used

for password cracking. Here is the full paper, an appendix with more informations, and the presentation slides.