
Crack Me I’m Famous: cracking weak
passphrases using publicly-available sources

Hugo Labrande
hugo.labrande@inria.fr

INRIA Nancy, Equipe CARAMEL University of Calgary ISPIA

Abstract. Using only publicly-available data and very modest comput-
ing power, we built a dictionary of several million famous sentences, and
used it to crack millions of passphrases, and some mnemonic-based pass-
words. It shows that even low-skilled attackers can crack such passwords
very easily, confirming that they offer very poor security.

1 Introduction

Password-based authentication requires users to pick passwords that
are complex to guess but easy to remember; in practice, a majority of
them do not fulfill both criteria. For instance, some users still choose to
pick one common word (e.g. "password"), which is easily found with a
dictionary attack, or the name of a brand, or a slang word, which are not
that much harder to find with bigger dictionaries [11,6]. Another strategy
is to pick a simple password and complexify it by mangling it; however
the methods chosen by users are often very simple (e.g. add a digit at the
end, replace "o" by "0", etc.), and hackers can crack them with lists of
common word-mangling rules, that are all applied to every word in the
dictionary by password cracking software.

Another strategy that sometimes implemented is to ask users to choose
a passphrase, i.e. a random sequence of words; one can also use mnemonic-
based passwords [9], which consists in making short passwords out of
passphrases. The rationale is that passphrases are longer than passwords,
but easier to remember. Passphrase-cracking has been less studied than
password-cracking, maybe because passphrases are not as widely used.
Several works [9,5] have attempted to build sentences from a sequence of
words by analyzing how users create a random sentence. One can also use
sentences from a corpus of "real text" as potential passphrases, like [12], who
used every book from the Gutenberg project and every Wikipedia article.
This yielded about 1.3 billion passphrases, allowing to crack passwords
like "thereisnofatebutwhatwemake" or "givemelibertyorgivemedeath".



480 Crack Me I’m Famous!

Our work attempts to study the use of famous sentences, which is
to say sentences appearing in mainstream culture (e.g. quotes, slogans,
proverbs, expressions, etc.) as opposed to user-crafted and user-specific
sentences, as passphrases. We do so because some studies [9,5] showed a
majority of users tend to choose famous sentences for their passphrases or
mnemonic-based passwords; some passwords found by [12] seem to confirm
this (e.g. the two examples given above). We isolated 65 million famous
sentences from publicly-available corpora in order to build a dictionary
which allowed us to crack more than 4 million passwords. Most of them can
probably be cracked using the methods of [12]; however, we emphasize that
our method is simpler, faster and requires less data and memory, which
means that it is within the grasp of any attacker; as such, our work confirms
the well-known fact that such sentences offer poor password security. Also,
system administrators can use our methods and our dictionaries to find
vulnerable, but not too obvious, passwords in their network.

2 Building dictionaries

In what follows, we focus only on passphrases, and disregard all indi-
vidual words, since there are already many wordlists containing millions
of words, e.g. [11,7]. Hence, we hope our dictionaries will be orthogonal to
existing wordlists, with few overlaps in the passwords guessed.

We first used the list of titles of Wikipedia articles, which is conveniently
directly downloadable [4]. We considered the English, French, Spanish,
German, and Italian versions to cover a great number of sentences and
expressions; we then merged the five resulting dictionaries. Our process
was as follows: only keep entries containing a space, remove disambiguation
terms (e.g. "Queen (band)"), then for each entry with a leading article 1,
add the same entry with no article. We preserved original punctuation
since word-mangling rules allow us to try a password with or without
punctuation. In the end, we got a first dictionary, called wikititles, with
12,925,291 entries, containing more than 1 million non-English entries.

We also used Wikiquote to add quotes that do not have their own
articles on Wikipedia. We first downloaded the complete contents of five
Wikiquote projects (English, French, Spanish, Italian, German) [4], then
used a few scripts to pick out the quotes 2 and remove XML and Wikipedia
tags: those scripts are not very hard to write and one can extract most

1. We used "The", "Le", "La", "Les", "El", "Los", "Las", "Der", "Die", "Den", "Das",
"L’", "Il", "Un", "Una", "Une", "A", "An", "Ein", but missed a few like "Des" or "Gli".

2. For instance, most of them are on lines starting with an asterisk.



H. Labrande 481

quotes with a bit of care. We also added each quote’s individual sentences
to our dictionary. The result was what we call wikiquote dictionary,
made of 2,159,691 entries.

Those dictionaries still miss good candidates for passphrases; for in-
stance, a song that was not released as a single may not have its own
Wikipedia page, but should still be considered (e.g. "afraidtoshootstrangers"
[12]). We noticed that quotable group of words often appear either between
quotation marks, or in bold (two single quotes in Wikipedia syntax) or
italics (three single quotes); hence, we created the wikiarticles dictionary
by capturing groups of words which appear between such delimiters in
the body of any Wikipedia article. Once again, this only required a few
simple scripts, which ran on the five Wikipedias we consider here in no
more than a dozen hours; this yielded 56,910,550 entries, which is about
the same as other cracking dictionaries (e.g. [7,11]). We note that 60% (10
million candidates) of the wikititles and wikiquote dictionaries does
not appear in this dictionary, which means those are still useful.

We also considered other sources of data in the public domain to build
smaller, more targeted, dictionaries. We used the Rap Dictionary [1], a
wiki dedicated to hip-hop culture; most of its pages are spam, but we
reasoned that spam may be used for unique passwords by some users
(e.g. "cheapviagra"). We manually grabbed the page titles, which gave us
the dictionary rapdict using 2,200 pages specifically about hip-hop, and
rapdict+spam using all 20,000 pages, including spam. We also used the
Free Online Dictionary Of Computing (FOLDOC [1]), a database of 15,000
computer science terms and slang; keeping only the terms which contained
a space gave the dictionary foldoc, which has 6,600 entries. Most terms
present in those dictionaries do not appear in our other dictionaries.

Many more sources of data could be exploited, even if scraping them
may violate Terms of Service. We avoided them to show that someone
(e.g. a sysadmin) could build a good dictionary using only legal sources;
furthermore, only Wikipedia offers direct download. Examples of interest-
ing sources are the Urban Dictionary, Twitter (whole tweets, hashtags),
message boards (signatures, usernames), IMDB, song lyrics websites, etc.
A few of them appear to have been used by [12] or [6], although we do
not know how useful they were.

3 Results

As a target for our attack, we picked the MD5 hashes from the Korelogic
dump [8], which contains 139 millions hashes, around 85% of which have



482 Crack Me I’m Famous!

been cracked [10]. We used John the Ripper Jumbo [2]; unlike ocl-Hashcat
[3], it only uses CPU power instead of GPU, which leads to modest but
very reasonable speeds. Furthermore, we used word-mangling rules to
increase the number of passwords we cracked, using the Wordlist set of
rules bundled with JtR, and 91 passphrase-mangling rules that we created,
which all include a transformation on whitespace (unlike Wordlist rules);
see the discussion in Section 5. The computation took a few weeks on an
outdated laptop with a 2GHz processor: dedicated crackers with several
high-speed GPUs could probably replicate our results in a few hours.

Name of dictionary Entries Pwd cracked
wikititles 12,925,291 1,242,879
wikiquote 2,159,691 435,744

wikiarticles 56,910,550 3,924,023
rapdict+spam 20,017 7,778

rapdict 2,213 3,146
foldoc 6,589 6,529

merged 65,351,745 4,266,871

Table 1. Results

It appears that our dictionaries allow us to crack more than 4.2 million
passwords derived from famous sentences, which is number; around 1.8
million of them have 10 characters or more, and around 200,000 more
than 16 characters. Furthermore, our dictionary can supplement existing
wordlists: for instance we found that 1.93 million passwords, or 40% of our
total, cannot be cracked using the GDictv2 [7] wordlist, a popular wordlist
made of over 21 million candidates. Our other sources gave interesting
results, since several hundred unique passwords were obtained with those
dictionaries (except rapdict, which did not crack any new passwords).

wikititles Lamborghini Murciélago LP 670-4 SuperVeloce
Ghost in the Shell: S.A.C. Solid State Society

wikiquote Be sure to drink your ovaltine,
judge a man by his questions rather than by his answers

(tied for longest password ever cracked with
"LyingIsTheMostFunAGirlCanHaveWithoutTakingHerClothesOff" by [6])

wikiarticles superlativeextruderinterlockedtechnologyexclusivenexus
Wikipedia, l’encyclopedie libre et gratuite
I could tell you but then I’d have to kill you
Pa’s wijze lynx bezag vroom het fikse aquaduct
Cantami o diva del pelide Achille l’ira funesta

foldoc exercise, left as an polymorphic lambda-calculus
rapdict+spam fastcashadvanceonline penisenlargementthatworks

Table 2. Examples of cracked passwords



H. Labrande 483

4 Mnemonic-based passwords

The study [9] showed that a majority (50%-65%) of users choose a
famous sentence when asked to construct a mnemonic-based password.
We built a dictionary of 33 million mnemonic passwords based on famous
sentences, by taking the first letter of each word of a phrase, which is
a common method [9]; one could also look at leet-speak or homophonic
substitution (e.g. "@" for "at") [9] but we did not. We kept punctuation
and capitalization, and used the same rules as with the other dictionaries.

Analyzing the results for this part was rather hard: trivial passwords
(e.g. "qwertyuiop", "111111") were produced, as well as single words which
were in fact the initials of a passphrase; hence we would recommend to only
use this dictionary on hashes remaining after using a standard wordlist,
which we did not attempt for lack of time. Nonetheless, the number of
mnemonic-based passwords we were able to isolate was frustatingly small,
which could mean that the technique is not used very widely, or that more
sophisticated rules are used. However, by only focusing on the longest
passwords, we found more than 300 passwords which looked hard to
guess by conventional techniques; guessing the underlying passphrases
was done manually, using the fact that order was preserved when creating
our mnemonic-based dictionary. Hence, we report cracking a 19-character
mnemonic-based password, "1lomtjjzictcttsdkcs" ("Pan Tadeusz"), as well
as "uuddlrlrababsS" ("Konami cheat code"), "tbtitbtwtbtewb" (catchphrase
of Bret "The Hitman" Hart), and a few dozen others.

5 Passphrase-mangling rules

We attempted to determine which word-mangling rules work best in
the case of dictionaries of passphrases, to attempt to optimize password
crackers: for instance only one rule in the set of standard rules present in
John the Ripper takes whitespace into account. We generated by hand a
set of rules targeting passphrases, using the following behaviors: "delete
spaces" or "replace spaces by underscores", and any combination of "delete
punctuation", "delete punctuation except ?,! and .", "delete symbols",
"lowercase", "capitalize", "uppercase", and "append digits". This created
91 new rules, which we combined to Wordlist rules to get the results of
Section 3 and 4. We then tested the individual efficiency of each rule.

Our results show that "delete spaces, lowercase" and "delete spaces,
append digit" are by far the best rules, followed by "delete spaces and
punctuation, append digit", "delete spaces, append digit, lowercase or



484 Crack Me I’m Famous!

uppercase" and "delete spaces". We note the underwhelming performance
of all rules replacing whitespace by underscores. We recommend the rule
"delete spaces, append digit" to be added to Wordlist rules, since it is as
efficient as "delete spaces, lowercase", which is already present. Finally, it
would be interesting for passphrase-cracking to be able to capitalize the
first letter of each word, which JtR does not seem to allow.

6 Conclusion

We showed new techniques to build passphrase-cracking dictionaries
using freely available sources of data and a few scripts; our method is fast
and efficient, and yielded several million candidates. We cracked a great
number of hashes using our dictionaries, yielding long and complicated
passwords, e.g. a 55-character long password and a 19-character long
mnemonic-based password. Finally, we also studied which passphrase-
mangling rules were the most useful, and gave a few recommendations to
password crackers. Our work shows any low-skill, low-resource attacker
can crack interesting passphrases that probably look secure to users; our
work could be refined by studying more sources of data, or including more
word-mangling rules to the set of rules considered.

References

1. Foldoc & Rap Dictionary. http://foldoc.org/ & http://www.rapdict.org/.
2. John the Ripper. www.openwall.com/j.
3. oclhashcat. http://hashcat.net/oclhashcat/.
4. Wikimedia dumps. http://dumps.wikimedia.org.
5. J Bonneau and E Shutova. Linguistic properties of multi-word passphrases. In

Springer Berlin Heidelberg, editor, Financial Cryptography and Data Security, pages
1–12, 2012.

6. Y. Chrysanthou. I have the ♯cat so I make the rules. Passwords14, 2014.
7. Gdataonline. http://gdataonline.com/downloads/GDict/.
8. Korelogic. https://www.korelogic.com/InfoSecSouthwest2012_Ripe_Hashes.

html.
9. C. Kuo, S. Romanosky, and L.F. Cranor. Human selection of mnemonic phrase-

based passwords. In ACM, editor, Second Symposium on Usable Privacy and
Security, pages 67–78, 2006.

10. m3g9tr0n. Cracking story : How i cracked over 122 million sha1 and md5 hashed
passwords. Thireus’s blog.

11. Sébastien Raveau. Hunting for passwords or putting an end to the arms race.
Passwords12, 2012.

12. K. Young and J. Dustin. Password cracking, from "abc123" to "thereisnofate-
butwhatwemake". Passwords13, July 2013.

http://foldoc.org/
http://www.rapdict.org/
www.openwall.com/j
http://hashcat.net/oclhashcat/
http://dumps.wikimedia.org
http://gdataonline.com/downloads/GDict/
https://www.korelogic.com/InfoSecSouthwest2012_Ripe_Hashes.html
https://www.korelogic.com/InfoSecSouthwest2012_Ripe_Hashes.html

